

This article was downloaded by:

On: 30 January 2011

Access details: *Access Details: Free Access*

Publisher *Taylor & Francis*

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Spectroscopy Letters

Publication details, including instructions for authors and subscription information:

<http://www.informaworld.com/smpp/title~content=t713597299>

Sputtering of the Magnesium Cathode Surface by Ar Ion

D. Z. Zhechev^a

^a Institute of Solid State Physics, Sofia, Bulgaria

To cite this Article Zhechev, D. Z.(1995) 'Sputtering of the Magnesium Cathode Surface by Ar Ion', *Spectroscopy Letters*, 28: 3, 327 — 329

To link to this Article: DOI: 10.1080/00387019508009881

URL: <http://dx.doi.org/10.1080/00387019508009881>

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: <http://www.informaworld.com/terms-and-conditions-of-access.pdf>

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

**SPUTTERING OF THE MAGNESIUM CATHODE SURFACE
BY Ar⁺ ION**

Key words: Hollow cathode discharge, Sputtering coefficient, Dark cathode space

D.Z.Zhechev

*Institute of Solid State Physics, BAS
72 Tzarigradsko Chaussee blvd.
1784 Sofia, Bulgaria*

ABSTRACT

The sputtering of magnesium cathode surface by argon ions is analysed. The real sputtering coefficient in the discharge $S_R=0.03$ atoms/ion is calculated for the parameters of the used hollow cathode discharge.

INTRODUCTION

When the spectrum of a material which is difficult to sputter presents an interest, argon is particularly suitable as a working gas in Hollow Cathode Discharge (HCD). Magnesium is precisely this type of material and its spectrum is usually excited in HCD. There are very few data on magnesium surface

sputtering at all. That is why in this report the parameters of this process are calculated for Ar/Mg couple HCD. The yield of Mg atoms is also evaluated.

EXPERIMENT AND CALCULATIONS

A cylindrical bottomless cathode ($2R=8\text{mm}$, $l=40\text{mm}$) from magnesium is used. The discharge operates at argon pressure $p_{\text{Ar}}=0.3\text{Torr}$ and discharge currents from 5mA to 40mA . Within this $\{p_{\text{Ar}}, i\}$ range the spectrum of Mg atoms is observed to be stable enough.

1. Determination of the Sputtering Coefficient S

The interaction between the cathode surface and the bombarding argon ion depends on the energy of Ar^+ particle, accelerated during its last free path λ_i in the cathode dark space. Taking into account that the resonant recharge process $\text{Ar} + \text{Ar}^+ \rightleftharpoons \text{Ar}^+ + \text{Ar}$ is the main one in the dark space¹, the λ_i -value is determined by the corresponding cross-sections $Q_r(v)$ and the concentration of Ar^+ ions n : $\lambda_i = (n \cdot Q_r(v))^{-1}$. The energy $W = Mv^2 / 2$, accumulated near the cathode surface is calculated by the equation:

$$eE = eU / d = p_{\text{Ar}} \cdot Q_r(v) \cdot Mv^2 / 2 \quad (1)$$

where E is the electric field intensity in the dark space, U - the cathode voltage drop, d - the width of the dark space and M the mass of Ar^+ ion.

Eq. (1) is solved graphically by using $Q_r(v)$ data in Ref. [2]. The values $v = 1.6 \cdot 10^6 \text{cm.s}^{-1}$ and $Q_r(v) = 32.5 \cdot 10^{-16} \text{cm}^2$ are found to satisfy the equation when $p_{\text{Ar}}=0.3\text{Torr}$, $U=260\text{V}$, $d=0.15\text{cm}$, $i=10\text{mA}$. The maximum energy W_m of Ar^+ bombarding ion corresponds to the maximum intensity of the field E_{max} . From the relation $E_{\text{max}}=2U/d$ and Eq. (1) the maximum energy is calculated to be $W_m=104\text{eV}$.

For the Ar/Mg couple there are no data for the sputtering coefficient S at $W=104\text{eV}$ up to date. By extrapolating the data in Ref. [3] the value $S(W=104\text{eV})=0.1 \text{ atoms/ion}$ is found.

The real coefficient S_R in the discharge is calculated based on the consideration in Ref. [4], i.e. by introducing an imaginary source of Mg atoms near the cathode surface. Then, according to Ref. [5] the value $S_R=0.03$ atoms/ion is obtained taking into account both the localisation of the imaginary source near the surface (calculated distance about 0.07 cm) and $p_{Ar}=0.3$ Torr.

2. Yield of the Sputtered Mg Atoms in Ar/Mg HCD

The number N of Mg atoms appearing per unit length l of the imaginary source in s^{-1} can be found from the relation:

$$N = i \cdot S_R (e \cdot l)^{-1} \text{ atoms}$$

The value $N = 1.1 \cdot 10^{15}$ atoms/cm.s is calculated at above mentioned parameters of the discharge.

ACKNOWLEDGEMENT

This investigation was supported by the National Foundation for Scientific Researches (Contract No240).

REFERENCES

1. Smirnov B.M., *Ph. D. Thesis*, Kourchatov Inst., Moskwa, 1966.
2. Galitzky V.M., Nikitin E.E., Smirnov B.M., *Theory of Atom Particles Collision*, 1 ed., Moskwa, Nauka, 1981 (in Russian).
3. Behrisch R., *Sputtering by Particle Bombardment*, "Topics in Applied Physics", vol. 47, Springer Verlag, 1981.
4. Bosnjak B., Zhiglinsky A., Kundt G., Hlopina T., Opt. Spectr. 1972; 33: 1032.
5. Pleshivtzev A., *Cathode Sputtering*, Moskwa, Atomizdat, 1968 (in Russian).

Date Received: October 25, 1994
Date Accepted: December 7, 1994